「ZJOI2014」力-快速傅立叶变换

给出$n$个数$q_i$,给出$F_j$定义为:

$$
F_j = \sum_{i < j}\frac{q_i q_j}{(i-j)^2} - \sum_{i > j}\frac{q_i q_j}{(i-j)^2}
$$

令$$E_i = \frac{F_i}{q_i}$$

求$E_i$的值。

链接

Luogu P3338

题解

先化简:
$$
E_j = \sum_{i < j}\frac{q_i}{(i-j)^2} - \sum_{i > j}\frac{q_i}{(i-j)^2}
$$

注意到我们只需要求:
$$
E_j’ = \sum_{i = 1}^{j-1}\frac{q_i}{(i-j)^2}
$$

注意到卷积的形式:

$$
(f * g)[i] = \sum_{j = 0}^{i} f[j]\,g[i-j]
$$

在上式中,令$f[i] = q_i,g[i] = i^{-2}$,由卷积的定义可以发现:

$$
E_i’ = (f * g)[i]
$$

这个过程可以用快速傅立叶变换优化,达到$O(n \log n)$的复杂度。

然后把序列反转,再做一遍,组合一下就是最后的答案。

代码

点击切换显示状态
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 500000;
typedef complex<double> complex_t;

namespace FFT{
const double PI = acos(-1.0);
// n = 2^k
void fft(complex_t *P,int n,int op){
static int r[MAXN];
int len = log2(n);
for(int i = 0;i<n;i++)
r[i] = (r[i>>1]>>1)|((i&1)<<(len-1));
for(int i = 0;i<n;i++)
if(i < r[i]) swap(P[i],P[r[i]]);
for(int i = 1;i<n;i<<=1){
complex_t x(cos(PI/i),sin(PI/i)*op);
for(int j = 0;j<n;j+=(i<<1)){
complex_t y(1,0);
for(int k = 0;k<i;k++,y*=x){
complex_t p = P[j+k],q = y*P[i+j+k];
P[j+k] = p+q,P[i+j+k] = p-q;
}
}
}
}
void mul(double *a,double *b,double *res,int n){
static complex_t c[MAXN],d[MAXN];
for(int i = 0;i<n;i++) c[i] = d[i] = 0;
for(int i = 0;i<n;i++)
c[i] = a[i],d[i] = b[i];
fft(c,n,1),fft(d,n,1);
for(int i = 0;i<n;i++)
c[i] *= d[i];
fft(c,n,-1);
for(int i = 0;i<n;i++)
res[i] = double(c[i].real())/double(n);
}
}

int n;
double q[MAXN];

void init(){
scanf("%d",&n);
for(int i = 1;i<=n;i++)
scanf("%lf",&q[i]);
}

void solve(){
static double ans[MAXN],tmp[MAXN],a[MAXN],b[MAXN];
int m = 1;
for(;m<=2*n;m<<=1);
// 注意这里的b[i]一定只能到n!
for(int i = 1;i<=n;i++)
a[i] = q[i],b[i] = (1.0/double(i))/double(i);// 这里可能会爆一点什么东西

FFT::mul(a,b,tmp,m);
for(int i = 1;i<=n;i++) ans[i] += tmp[i];
reverse(a+1,a+n+1);

FFT::mul(a,b,tmp,m);
for(int i = 1;i<=n;i++) ans[i] -= tmp[n-i+1];
for(int i = 1;i<=n;i++) printf("%lf\n", ans[i]);
}

int main(){
init();
solve();
return 0;
}