「NOI2012」随机数生成器-矩阵快速幂

给定正整数 $n,m,a,c,X[0],g$ ,求按照 $X[n+1] = (a X[n] + c) \bmod m$ 生成出的第 $n$ 项 $X[n] \bmod g$ 的值。

数据范围: $n,m,a,c,X[0] \leq 10^{18}$

链接

Luogu P2044

题解

构造转移矩阵:

$$
\left[\begin{matrix}
a & c \\
0 & 1
\end{matrix}\right]
\times
\left[\begin{matrix}
x_{n}\\
1
\end{matrix} \right]
=
\left[\begin{matrix}
a x_n + c \\
0 + 1
\end{matrix} \right]
=
\left[\begin{matrix}
x_{n+1} \\
1
\end{matrix} \right]
$$

快速幂即可。

这里的乘法需要快速乘。

代码

点击切换显示状态
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <cstdio>
#include <cstring>
using namespace std;
#define ld long double
#define ll long long

ll m,a,c,x0,n,g;

ll mul(ll a,ll b){
a%=m,b%=m;
return ((a*b - (ll)((ll)(((ld)a/m) * b + 1e-3) * m))%m+m)%m;
}

struct Matrix{
ll a[3][3];
Matrix(){
memset(a,0,sizeof(a));
}
};

Matrix mul(Matrix &_a,Matrix &_b){
Matrix ans;
for(int i = 1;i<=2;i++){
for(int j = 1;j<=2;j++){
for(int k = 1;k<=2;k++){
(ans.a[i][j] += mul(_a.a[i][k],_b.a[k][j]))%=m;
}
}
}
return ans;
}

Matrix pow(Matrix x,ll p){
Matrix ans;
ans.a[1][1] = ans.a[2][2] = 1;
for(ll i = p;i;x = mul(x,x),i>>=1) if(i & 1) ans = mul(ans,x);
return ans;
}

int main(){
scanf("%lld %lld %lld %lld %lld %lld",&m,&a,&c,&x0,&n,&g);x0 %= m;
Matrix tmp;
tmp.a[1][1] = a % m, tmp.a[1][2] = c % m,tmp.a[2][2] = 1;
tmp = pow(tmp,n);
ll ans = ((mul(tmp.a[1][1],x0) + tmp.a[1][2])%m)%g;
printf("%lld\n",ans);
return 0;
}